


**BIOPOLE** will determine how polar ecosystems regulate the balance of carbon and nutrients in the world's oceans, driving primary productivity and the global carbon cycle



- What are the key inputs that contribute to nutrient balance in the polar oceans?
- How do polar marine ecosystems regulate this balance and sequester carbon?
- What are the global impacts to primary productivity, carbon cycles and fisheries?

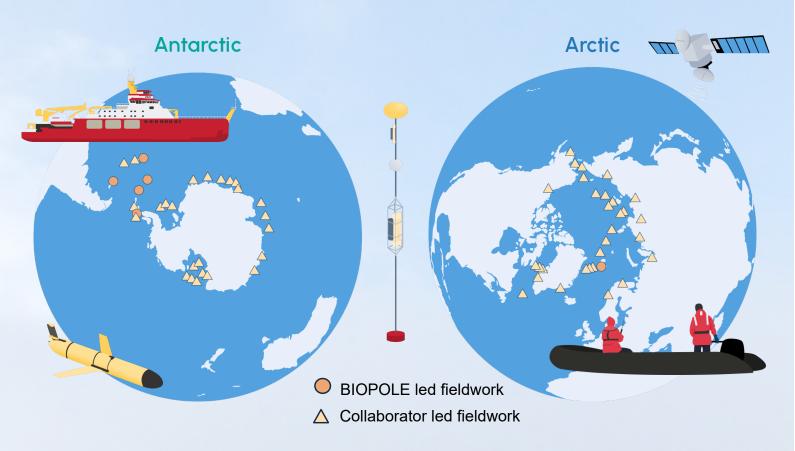
## **TOOLS**



**Data mining** - to make extensive use of existing data that has already been collected in the polar regions.



Laboratory bioassays - to determine the sensitivity of plankton to changes in nutrients and climate




**Fieldwork** - to collect new field data from land, rivers, sea ice and seas in both the Arctic and Antarctic, using small boats, ships (including the RRS Sir David Attenborough), and autonomous instruments



**Modelling** - to use a range of modelling approaches (Lagrangian,idealised, regional and global modelling) to investigate the flows of carbon and nutrients from the polar regions to the global ocean and their climate sensitivities

**BIOPOLE** is operating in both poles simultaneously. In the Antarctic, it will lead a number of science expeditions while, in the Arctic, it will mainly utilise collaborator led fieldwork

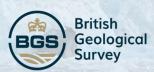


## **IMPLICATIONS**

BIOPOLE will address urgent ecosystems challenges in Earth system modelling, the budgeting of key processes in the carbon cycle and the impact of climate change on fisheries

## MORE DETAILS AT: www.biopole.ac.uk






@BIOPOLE\_NERC



https://www.facebook.com/Biopole.nerc/













