ASM 2024 Participants

BIOPOLE Annual Science Meeting 2024

The 2nd BIOPOLE Annual Science Meeting took place from the 6th to the 8th of March 2024 at the British Antarctic Survey in Cambridge and online. BIOPOLE Project Members, Early Career Researchers (ECRs), Members of the Programme Advisory Board (PAB), Science and Strategic Partners were invited to participate. Around 50 in-person and 13 virtual participants attended the hybrid BIOPOLE Annual Science Meeting.

The meeting spanned through three days and was filled with fruitful discussions, great scientific talks, exciting presentations, interesting keynotes and much more. All sessions were chaired by BIOPOLE Early Career Researchers (ECRs).

The first day kicked off with the project overview and work package presentations, where all four BIOPOLE work packages (WPs) (WP1 – Inputs, WP2 – Processes, WP3 – Impacts, WP4 – Management) presented the progress of work.

The poster session followed. After the poster session, quick-fire talks took place, after which we had a discussion.

The second day started with the ECRs’ breakfast. After the breakfast, Guang Yang delivered a keynote on ‘Zooplankton mediated carbon pumps’.

Next, we learned about the major BIOPOLE fieldwork efforts in Arctic (Arctic ships), Ny Alesund, and Southern Ocean (BIOPOLE Cruise I).

Presentations on data management, the Decade Collaborative Centre for the Southern Ocean Region (DCC-SOR), and Arctic policy were delivered, along with updates from the ECRs.

We then had four breakout sessions before lunch and four afterward. After the breakout session, Katrin Linse delivered a keynote on ‘Benthic elements of BIOPOLE’. We closed the day with the Executive Board and Programme Advisory Board meeting.

The third and the last day of the meeting started with the ECR-led session on the ‘Imposter syndrome: taming your inner critic’. Following that, we heard the rapporteurs’ reports from the breakout sessions and engaged in a discussion. Further, the PAB delivered an insightful report for the project. Before we concluded the meeting, we had a couple of discussion sessions on ‘Interaction with partners and within the project to achieve key BIOPOLE objectives in Arctic and Antarctic’ as well as ‘BIOPOLE into the future and lessons learned’.  

We would like to express our gratitude to every single individual for their work in BIOPOLE and for their participation in the meeting be it in-person or virtual.

SD033 crew and science party at one of the sea ice stations

BIOPOLE Southern Ocean Cruise 1 Successfully Completed

British Antarctic Survey recently led the highly successful BIOPOLE Southern Ocean Cruise I (Nov-Dec 2023), which was the first ‘formal’ scientific voyage of the RRS Sir David Attenborough (SD033). Taking place over 10 days in an otherwise logistic-heavy six-week schedule, BIOPOLE I was the first funded scientific project undertaken on our new research vessel. The objectives of this cruise addressed a range of Tasks under Work Packages 1-3. It sought to understand the role that annual sea ice retreat plays in setting the conditions for the spring bloom and how this bloom acts to draw down carbon from the atmosphere and sequester it in the deep ocean. In addition, the fortuitous placement of the A23a megaberg allowed us to undertake opportunistic sampling of how the colossal chunk of the Filchner ice shelf, first calving in 1986, is modifying the physical and biogeochemical properties of the surrounding ocean as it moves northwards. This ‘encounter’ with the world’s largest iceberg and the associated drone footage also generated massive media interest across the globe.

BIOPOLE I was undertaken by an 11-person science team, including BIOPOLE scientists Andrew Meijers (Principal Scientific Officer, physics), Nadine Johnston (ecosystems), Gabi Stowasser (ecosystems), Alex Brearley (gliders), Petra ten Hoopen (data manager), and BIOPOLE PhD student Laura Taylor (biogeochemistry), brilliantly supported by BAS Antarctic Marine Engineering, IT, data and lab management personnel, during an intense 10-day period in early December. The small team was ably backed up by significant shore-based support, both for glider piloting but also troubleshooting, sample and data processing. The survey section stretched across the rapidly retreating ice edge from the northwest of the Powell Basin to well into the Weddell Sea and 100% pack ice; and back out again. Over 1640 individual water samples were taken from the more than 30 CTDs, along with 10 Mammoth and almost 30 Bongo net deployments. The voyage also deployed three autonomous gliders, including two capable of novel under-ice navigation. These presently remain in the water  following the development of the spring bloom and further retreat of the ice, and are providing greater spatio-temporal context to the ship-based process study.  Additionally, personnel were craned onto the sea ice to collect sea ice cores in support of BAS PhD projects, and a mooring rescued at short notice from the path of A23a.

SD033 crew and science party at one of the sea ice stations

BIOPOLE I’s objectives were to determine the dynamics, biogeochemical composition and structural change in the upper water column as the ocean moves seasonally from being fully ice covered to fully exposed, as well as determine the structure and composition of the spring phytoplankton bloom and associated mesozooplankton community, particularly the copepod Calanoides acutus. The emphasis on copepods is part of the core BIOPOLE objective of quantifying the lipid component of the biological carbon pump. Over the course of their development, C. acutus develop a large carbon-rich lipid sac, primarily to fuel their metabolism and aid buoyancy during their winter diapause (a form of hibernation used to survive low food levels and avoid predation) at depths of (potentially) up to 2500 m.  This deep diapause acts to transport carbon from the atmosphere to the deep ocean, but this transport has never been quantified despite the vast biomass that copepods represent.

Using a combination of respiration experiments together with investigations of their lipid sac concentration and size, population structure, distribution, and abundance, we can determine how much carbon this species is capable of transporting to the deep ocean, and its influence on nutrient recycling in the upper water column. The results of this cruise will be complemented by work carried out in the austral summer of 2022/23 onboard RRS Discovery (DY158) and a further BIOPOLE cruise in the austral autumn of Feb/Mar 2025 onboard RRS Sir David Attenborough where the late season condition of copepods will be assessed.

Despite fears of ‘first cruise’ teething issues the ship and personnel performed near perfectly.  The SDA demonstrated its great capabilities; switching speedily between logistics and science, and easily handling challenging ice conditions, all whilst providing an unprecedented level of comfort for expeditioners!  As ever a massive thank you must go to the officers and crew of the SDA, for delivering successful science with enthusiasm and skill, as well as to the science and support party who pulled together and supported one another at all times to produce some excellent and exciting new data.

BIOPOLE also attracted extensive media coverage during this cruise. The opportunistic science carried out at megaberg A23a had a high media profile, with the article initially in BBC News online leading to a number of further interviews by the global press of a number of scientists on board. These included lengthy interviews with Andrew on the BBC news channel and news hour as well as CBS streaming news, Laura on CBC News Canada, and Alex on CNN’s Tik Tok channel! Nadine gave interviews on the BIOPOLE 1 cruise and A23a on BBC Science in Action, BBC Inside Science, and BBC’s World tonight. Nadine also participated in STEM learning’s 2023 Protecting Our Planet Day Protecting Our Ice Session which was led by BAS PhD student Rosanne Smith and broadcast live from the RRS SDA and Rothera Research Station, and viewed by 54, 696 people (51,600 young people and 3, 096 adults).

Cruise track of SD033, with the inset showing the location of BIOPOLE I science across the sea ice edge

The authors of the article – Andrew Meijers, Nadine Johnston, Laura Taylor, Gabriele Stowasser, Alexander Brearley, and Petra ten Hoopen from British Antarctic Survey

RV Polarstern through the fog

BIOPOLE at the North Pole

On the 2nd August 2023, I (BIOPOLE researcher Dr Kathryn Cook, University of Exeter) joined the RV Polarstern in Tromsø, along with project partners Morten Iversen and Sinhue Torres-Valdes (AWI), to participate in the 9-week ArcWatch 1 (PS138) cruise to the central Arctic.  The overall aim of the 50 scientists participating on the cruise was to study the physics, chemistry, and biology of the sea ice, but I was invited along to collect samples to help address BIOPOLE WP2 deliverable ‘What controls the depth at which polar copepods diapause, and their physiological rates during overwintering?’.

I used a Hydro-Bios Midi Multinet (thanks to project partner Barbara Niehoff, AWI) to sample the important Arctic lipid storing copepods Calanus hyperboreus, Calanus glacialis, and possibly the northern North Atlantic interloper Calanus finmarchicus (we’ll have to wait for molecular confirmation to find out) throughout the upper 1500m of the water column.  I was also able to take samples from immediately below the sea ice using a net attached to an ROV affectionately known as ‘The Beast’.  We took samples at 9 ice stations, including the MOSAiC station and the North Pole.  These samples will be used to quantify the biomass (carbon and nitrogen), lipid content and composition, and estimate the metabolic rates using enzyme assays (Electron Transport System (ETS) activity as a measure of respiration rate; Amino-Acyl-t-RNA-Synthetases (AARS) activity as a measure of growth).  These data will be used to inform life-cycle food-web models and will be available to WP3 to help develop simplified, global parameterisations of the lipid pump and improve estimates of the amount of carbon sequestered in the mesopelagic ocean.

First steps on the ice. Kathryn Cook (University of Exeter)

As well as being very successful scientifically, this cruise was, by far, the most exciting research trip I have been on in my career to date.  Just getting out on the sea ice was amazing, but we also had helicopter excursions to measure ice thickness, a polar bear coming to play with ‘The Beast’, live footage of sea mounts and hydrothermal vents courtesy of the OFOBS (Ocean Floor Observation and Bathymetry), live music courtesy of The ArcWatchers (featuring project partner Morten Iversen) and of course being, literally, on top of the world.  We were accompanied by a media team who wrote regular social media posts, blogs (Arctic August – October 2023 – AWI Polarstern) and German newspaper articles, as well as a documentary film crew.  The documentary ARCWATCH – HOPE IN THE ICE was broadcast on 29 December 2023 at 9:45 p.m. by German broadcaster ARD and is available (in Germany) in the ARD Media Library.  There should be an international version released at some point, so watch this space.

Wrestling ‘The Beast’ with net into a hole in the ice to sample under ice copepods. L-R Kim Vane (AWI), Emiliano Cimoli (University of Tasmania), Marcel Nicolaus, Julia Regnery (AWI).

The author of the blog – Kathryn Cook (University of Exeter)

Meet the Team

Aidan Hunter

  • Please introduce yourself.

I’m an ecological modeller working with the Ecosystems team at British Antarctic Survey in Cambridge. After a Masters in mathematics I applied for various environmental research roles, including modelling the fluid dynamics of wind turbine arrays, but eventually landed a marine science PhD in fishery statistics and modelling. This involved researching fishery-induced changes to the growth and maturation of commercially important species and developing a novel fish stock assessment model. My work has since focussed on fish food: plankton, particularly in the polar regions. I’ve developed a range of marine ecology models including an end-to-end ecosystem model, trait-based copepod model, and Lagrangian (particle-tracking) size-structured phytoplankton model. As part of my work with each of these, I devised numerical methods of tuning model parameters to produce statistically optimum fits to multiple data sets – making the models match observed reality. My favourite way of doing this is via Bayesian methods.

  • What do you do within BIOPOLE?

Within BIOPOLE, I’m part of WP2, working to create species distribution models to simulate how polar copepod’s horizontal and vertical distributions respond to environmental conditions. Of particular interest is a natural carbon storage process called the ‘lipid pump’, that is, the vertical transport of carbon during seasonal diapause when copepods overwinter in deep water. My models will simulate present-day vertical carbon transport associated with diapausing copepod species and, with reference to high-resolution climate forecasts courtesy of the PolarRES project, predict changes to the lipid pump under potential future climate storylines. My work so far has involved finding and collating as much polar copepod data as I can and using it to estimate parameters useful for other BIOPOLE modellers. Though a necessary first step, data wrangling isn’t what I most enjoy. I’m really looking forward to getting properly stuck in to the actual modelling, and have been contemplating adopting Bayesian methods for this work.

  • Tell us about a skill or trait unique to you that you would like to share?

I spend (too) much of my free time in summer juggling – six balls on a very good day. If you’re in Cambridge and the weather’s nice we can take some paraffin to the park and throw fire clubs, catching is optional. I also enjoy much merriment in the many fine old pubs Cambridgeshire has to offer.

Aidan Hunter from British Antarctic Survey

Encouraging the Next Generation of Polar Biologists at Big Biology Day

On a sunny Saturday in October, BIOPOLE team member Jen Freer took part in the Big Biology Day at Hills Rd Sixth Form College in Cambridge. Along with others from the British Antarctic Survey, this exciting event provided a wonderful chance to engage with people of all ages, expertise, interests and backgrounds, as well as inspire young people to pursue careers in polar science and exploration.

Hosted by Cambridge Biologists, BBD has grown into one the largest free-to-attend festivals in the UK exclusively dedicated to the biological sciences. The event’s primary focus is to provide an up-close and personal experience with biology and for visitors from all different backgrounds to meet and interact with scientists.

We provided hands-on opportunities for visitors to learn about the incredible biodiversity of marine fauna in the Southern Ocean, from animals adapted to live around hydrothermal vents, to the mighty krill and the copepod crustaceans we are investigating for BIOPOLE. It was also great to share stories of our varied career paths, careers advice, the diverse activities we undertake as polar scientists, and the incredible experiences a career in polar science and operations can give you.

Thank you to the hard-working BAS team who volunteered their time, and to everyone who came out to talk to us. See you next year, Big Biology Day!

The author of the blog – Jen Freer (British Antarctic Survey)

BIOPOLE at Bluedot 2023

A team of around 20 plucky BAS scientists showcased our research, equipment, and facilities at bluedot, a family-oriented, science themed music festival held at Jodrell Bank telescope array in Manchester. Consistent rain throughout the long weekend turned the fields into a quagmire – I saw children sink past their knees in mud – but the conditions could not deter us nor 20,000 curious revellers keen to learn about polar science. Though perhaps some of them were more interested in sheltering under our big marquee! The fantastic BAS tent was a top attraction, giving headline act, Leftfield, a run for their money. Preparing our tent on arrival took a fair bit of work, but we all chipped and did it in jig time. The real work followed over the next three days speaking with the public about our exhibits, including models of Antarctic research stations and the Southern Ocean seabed; glacier ice containing bubbles from an ancient atmosphere; a large field tent and supplies for enduring Antarctic winter weather, with cosy clothing for children, their parents, and even some Galactic Empire stormtroopers to dress up in for photos; sophisticated gliders for autonomous sampling and an old-school net for hauling up zooplankton; and, at the polar ecology attraction where Laura and I presented the BIOPOLE project, seabird tracking tags and lots of preserved animals including krill and, the star of the show, a giant Antarctic sea spider.

There was lots of public interest in BIOPOLE, from children, parents, students, half-cut scallywags, and a few other marine scientists – everyone really. As BIOPOLE is such a wide-ranging project we could discuss many aspects of ocean science so, even though immediately grabbing people’s attention to a heavily diagrammatic poster wasn’t always easy, it never took long for our audience to discover something they were keen to learn about. The expeditions and in-situ sampling attracted some, while others were more enthused by ecosystem connections from nutrient inputs to the planktonic community, links to the larger animals that depend on them, and how environmental change modulates the whole system. A few people were most interested in how the project is funded – hmm, I don’t know why either. My stand-out memory from the three days of chatting about BIOPOLE, and ocean science in general, was getting schooled on marine zoology by a six-year-old boy! He knew it all and left me pretty much speechless. Each time I mentioned some animal or ocean process he leapt in to teach me a lesson about it. Well, after that humbling experience I was relieved to retreat into the music festival to dance in the rain late into the night. It was a thoroughly enjoyable weekend of science communication and festival exploits, a great mix of work and play.

The author of the blog – Aidan Hunter (British Antarctic Survey)

UKCEH Dips its Toes into (Arctic) Waters

It’s been a month since the team’s return to the UK from Ny Ålesund, Svalbard, and after a much needed two week holiday, I finally feel ready to put the proverbial pen to paper to put our epic BIOPOLE adventure into words. After re-reading my daily journal that I kept during the trip, I have realised that my ramblings completely failed to capture the utter privilege it was to spend time with these fantastic people and call this incredible place home for a month. So in this blog I will endeavour to expand on my scribblings and paint a picture for the reader that may just give them a small window into our month of thrilling polar science. It’s a tale of an arctic escapade involving impossibly good weather, a heroic label printer, the Poet Laureate, a squeaky winch, and the most fetching orange boat suits.

Our story starts long before our departure from the UK in July 2023. It starts back in May 2022 with an email I sent to my fellow UKCEH colleague, Dr Nathan Callaghan, asking to discuss the field campaign in Ny Ålesund of which he was the named coordinator. From this email I had the following reply: ‘Could you please send me a link to where I am listed as the task co-ordinator, as I have to admit that this is news to me. No problem having a discussion about this, but at present it sounds like you know more than me’. A less than ideal start to what would be, in the end, a very eventful and successful field campaign!

Fast forward to 2023 and the team had already completed the pilot field study in Loch Etive, Scotland (see a previous blog to learn more about that), and now had a good idea of what we needed to accomplish in Ny Ålesund and how we were going to go about achieving it. One major question in BIOPOLE is whether nutrient delivery from land-based sources is sensitive to climate change. If the balance of nutrients entering the sea changes in a warmer climate, then the impacts of climate change on polar marine ecosystems could be significant. To answer this question in Ny Ålesund, we need to track nutrients as they travel from land and glacial meltwaters, through rivers, and into the Kongsfjorden inlet and out to the open ocean. The data we collect here should be able to tell us where the nutrients are coming from, how they are transformed as they travel through the environment, and how much of this makes it out to sea.

With six months to go until the campaign kick-off, we hit the ground running with planning everything from rifle permits, medical exams, and navigating the online RiS portal, to ashing filters, creating lab protocols, and acid washing a mind boggling amount of bottles and containers. I should say here, none of this planning would have been possible without the help of the UK Arctic Research Station manager, Iain Rudkin, who was like a lighthouse in a planning storm, who always kept us heading in the right direction with his constant advice and guidance as we battered him with email after email of frantic questions. More on Iain and his many talents later on.

By May we were ready to pack up our five pallets of cargo to start their journey by ship from Bangor, Wales, to Ny Ålesund, Svalbard. By the end of June all of our meticulous planning was paying off and we were almost ready to head off with everything mostly under control. That was until I was asked two and half weeks before our departure if I could purchase a drone for measuring river discharge, learn how to fly it, and apply for special permission to use it in Ny Ålesund, all before we left. My typical technician response to this question? Absolutely!

Come the beginning of July, I had the drone (affectionately named Droney McDroneface) packed in my bag (and one day of practice flying under my belt), and was ready to leave an admittedly less than sunny summer in the UK to travel to the world’s most northerly community. The first four field team members met up in Longyearbyen, including Prof Chris Evans MBE, Dr Nathan Callaghan, Alex O’Brien, and myself (Alanna Grant) (all from UKCEH) and we journeyed on together further north on a plane not meant for those who suffer from aviophobia. Luckily, I am not one of those people and was treated to breath-taking views over mountains that rise up and ripple out of the ground, glaciers that stretch as far as the eye can see, and stunning blue green glacial lakes that dazzled in the July sun.

View of mountains, glaciers, and lakes from the plane window.
Photo: Alex O’Brien

On Arrival in Ny Ålesund we were met by our host, Iain, who showed us around the station and to our rooms. My room was number three; a small room with a comfortable single bed, a wardrobe, a desk and two chairs. A cosy place to call home for the next month. The station itself had everything needed to undertake a successful field campaign. Not only was it our living quarters but it also housed several excellent lab spaces. We also had use of the garage to store our mountains of bottles, as well as fridges and a freezer to keep our many samples preserved.

Our month kicked off with several days of training to ensure we would be safe and competent working in the field and in the station. Once this was complete the real fun began. We worked tirelessly for the first week with Chris, who brings a wealth of terrestrial and aquatic ecosystem biogeochemistry knowledge, leading the campaign. Our goal was to sample as many of the rivers that drain into the fjord as possible. These rivers were an even mix of glacial melt rivers and non-glacial rivers. We sampled for a wide range of determinands such as phosphorus, dissolved organic carbon, chlorophyll, oxygen isotopes, metals, and greenhouse gases, among many others. During this first week we were treated to excellent weather and spent several days out on the boat. Each river we would come to, we would spend several minutes surveying the coast line for any sign of polar bears before Iain would expertly land the boat on the shore like something out of a James Bond film. Some sampling sites were fairly open so you could be reasonably sure you weren’t sneaking up on a sleeping bear, whilst others were more enclosed and felt like places that we didn’t want to hang around in for too long. At these sites, after some further bear scouting on land, we would collect our samples as quickly as we could and return to the boat, lest a furry visitor would come ambling into view. Luckily for us the only polar bears we saw in the field were from the safety of the boat.

The team sampling a non-glacial river in the fjord.
Photo: Alex O’Brien
Team members visiting a sampling site in Ny London.
Photo: Alanna Grant
Nathan laughing at Chris who has fallen over. Just kidding. The team taking samples and measurements from a river (not pictured).
Photo: Iain Rudkin

Whilst at these river outflows, we also deployed the drone in an attempt to quantify river discharge, a vital measurement when trying to calculate nutrient outputs. This involved flying the drone over an area of the river that was un-braided and deep enough so as not to have rocks breaking the surface which would skew the surface velocity measurement. This proved more difficult than anticipated as it transpired that rivers that meet these requirements are very few and far between. However, we persisted and managed to get measurements at several of the sites and now have a better understanding of how this novel approach could be used in the future. And Droney McDroneface managed to get some fantastic photos and videos too. Ny Ålesund is a radio silence zone which means no WiFi, phone reception, or Bluetooth allowed. This isn’t ideal for using a drone so this work was made possible with collaboration from the Norwegian Mapping Authority and NKOM who kindly worked with us to ensure our drone would not interfere with their sensitive observatory measurements.

A braided glacial river that made it very difficult to take discharge measurements using the drone.
Photo: Alanna Grant
Ice bergs in the fjord captured by drone.
Photo: Alanna Grant

After each day sampling from the boat (or on bike/foot if possible) we would return to the station with our bulk water samples to subsample and filter for the various determinands. This was no easy task, as each determinant required a specific sized acid washed container and also had different filtering requirements. This challenge was expertly handled by Nathan, who developed a specific organisational system that allowed him to keep track of each sample whilst spending many hours hand filtering with a syringe. Nathan’s many hours of toil in the lab gained him the affectionate nickname of Lab Ape. Which was maybe less cool than his field nickname, Black Rifle. A suitable name for the guy who was always the first to jump out of the boat to undertake bear watch; risking his life for the science. A true polar hero!

Nathan (Black Rifle) stands guard on bear watch as the team takes samples.
Photo: Alanna Grant
Nathan (Lab Ape) prepares bottles in the lab for the day’s water samples.
Photo: Alanna Grant

We were generating an impressive amount of samples each day and if we were to hand write each label it would have taken us several extra hours each day. This is where Printy Mcprintface came in. The ultimate label printer who became the fifth member of the team and saved us from a month of cramped, ink stained hands. This was, in my opinion, easily the best thing we bought for the project and I would highly recommend one to anyone undertaking a highly intensive field campaign.

Label printer, Printy McPrintface; Project MVP.
Photo: Alanna Grant

While Nathan toiled away filtering in the main lab, I was set up in the wet lab next door with a six-rig filtering manifold which I used to filter sample water for multiple determinands at once, with the purpose of keeping the filters rather than the water. This involved filtering anywhere from 50ml to 2000ml of water, depending on the sediment load of the sample, through a filter until it clogged or I ran out of water. At first it would take many hours to get through only three or four samples, but once I had a system going it was like playing a melody on the piano; my hands would do the work while my mind would wonder onto other things. After a few days I could get through around six samples in two hours. This would come in handy as some days we would be on the boat for the majority of the day, come back in the early evening for dinner, and then spend the rest of the evening filtering up to 12 samples. We wouldn’t stop until all of the samples collected that day were filtered so we could be filtering until 10-11pm. This was made easier by the 24 hour sunlight so it never felt late, and by our own music playlists that kept us entertained; some playlists more eclectic than others.

6-rig filtration manifold used for sample filtering (filter funnel #6 and waste water container not pictured).
Photo: Alanna Grant

Also during this first week, Alex deployed the algal growth experiment baskets that were designed by the freshwater team at UKCEH Wallingford. Here’s what she had to say about the experience: ‘The abundance and growth rates of algae communities in the Arctic are not well known.  In July 2023, we undertook a series of in-river experiments. Floating baskets were used to determine the growth rates of river algae within their natural growing conditions. At each chosen site, a floating basket was set up containing samples of river water and its associated algae within bags made from semi-permeable membrane tubing. The algae are trapped within these bags, but nutrients can diffuse into the bag from the surrounding river water. As the algae grow and take up nutrients within the bag, fresh nutrients from the river water diffuse across the membrane, maintaining constant water quality conditions. In total, four baskets were successfully deployed in rivers flowing into the Kongsfjord, two glacial meltwater streams and two non-glacial. A fifth basket was anchored in the fjord to assess the growth rates of marine algae, and to determine how river algae entering the fjord would grow in higher salinities. In order to keep the baskets in place in the fast-flowing rivers around Ny Ålesund, we had to be creative in anchoring the baskets in place, including pinning them to the underlying sediment and setting up rock anchors in tarpaulin sheets to prevent them from being washed away. After 9 days, the baskets were collected and brought back to the lab at the UK Arctic Research Station, where the bags were removed and sampled for algal flow cytometry and chlorophyll analyses, to determine how the algal communities within the river had increased and changed in community composition. Setting up these experimental baskets in Arctic rivers provided a unique challenge, far removed from our regular work in British rivers, which has so far provided us with greater insights into algal activity in the rivers of Svalbard. And it couldn’t have been accomplished without the help of Chris, Iain, Alanna, and Nathan in the field helping cycle the baskets and algae from site to site and back again’.

Alex setting up the algae dialysis bags to deploy on the floating baskets.
Photo: Iain Rudkin

Part way through our campaign we were joined by Simon Armitage, the poet Laureate, and Sue Roberts, BBC radio 4 producer.  Simon and Sue joined us for four days with the goal of creating three half-hour documentaries for BBC Radio 4 which will be broadcast in the autumn.  They joined us for some field work to gain a deeper understanding of what’s really going on in this important part of the world. They were even kind enough to help with some of the greenhouse gas sampling.

Back from a day on the boat. From left to right – Alanna Grant, Simon Armitage, Nathan Callaghan, and Alex O’Brien.
Photo: Alanna Grant

One day in particular stands out for me as being especially memorable. On this day, as we headed by boat towards our intended sampling site, we spotted a polar bear on the shoreline of Blomstrandhalvøya, an island in the middle of the fjord. It was particularly special as this was the first one we’d seen. It was a large male that was walking with pace around the perimeter of the island. We stopped a safe distance away and watched it walking for a while. This experience was elevated from memorable to unforgettable as we sat in silence and listened to Simon poetically narrate this encounter. What a pleasure to share the moment we saw our first polar bear with the poet laureate. Later that same day, we headed towards an area of new icebergs that had recently calved from one of the sea-terminating glaciers in the fjord. We slowly nosed our way into the field of icy boulders, some being as small as pebbles, others being the size of a small building; all in various states of melt. We sat in silence for some time as Sue recorded the sounds of the melting ice. The sound is louder than you would expect it to be and includes various popping, bubbling, and fizzing notes. I could have sat there for hours, happily hypnotised by nature’s playlist. But as mesmerising as it is to listen to, it is also the soundtrack to a merciless countdown to a potentially ice free world and a reminder as to the importance of the science that takes place up here.  I look forward to hearing Simon’s take on this when the programs are aired on radio four in October.

Polar bear on the shoreline of Blomstrandhalvøya.
Photo: Iain Rudkin

Two weeks in and we had said goodbye to Chris and Alex, and were joined by WP1 co-leads, Prof Kate Hendry from BAS, and Prof Bryan Spears from UKCEH. Unfortunately for them, the fresh food supply was running low and the delicious mangos, avocados, and salads were slowly being replaced with tinned fruit, frozen vegetables, and sliced cabbage. With the next ship not due until after we’d left, we had to make do for the next two weeks. Kate’s goal for the trip was to reach eight sites along a transect line down the middle of the fjord, and deploy a CTD at various depths at each of the sites. This involved lowering a CTD and a niskin bottle on a winch to depths of up to 300 meters and winching it back up, by hand. I’ve been reliably informed that, unfortunately for those on the boat, this happened to be the world’s squeakiest winch, which haunts those who had the misfortune to use it to this day. Nevertheless, the team persevered and Kate now has an impressive dataset that has already shown some exciting results.  She also collected water samples at these marine sites for some of the biogeochemistry determinands and collected sediment samples from the bottom of the fjord, over 300 m into the abyss.

Kate on the work boat launching the CTD in the fjord using the winch.
Photo: Iain Rudkin

Bryan’s main task for the campaign was to produce a sediment sample archive across our many catchments and deep-water areas of the fjord. He committed himself to this task with more glee and gusto than I have ever seen from a researcher before. He was quite literally like a kid making mud pies and absolutely loving it. I’ve never seen someone sniffing sediment as if it were an expensive cheese or a fine wine. In the end he was very successful in his task and we left with several kilos of dried marine sediment for use in process experiments back in the UK. This will be opened up to the wider community – hopefully it will save others time and money in their pursuit of the black (sometimes red, sometimes white etc.) gold. Bryan was also a great help to the team overall, always jumping in the help wherever he could, and always doing it with a smile (and even a cheery song on occasion). That is with the exception of when he was wading out from the beach with a bucket, hunting for the salinity gradient with a probe, and overtopped his wellies. Much to the amusement of a nearby curious seal, who he swears he saw laughing maliciously at his misfortune.

Bryan measuring the salinity of the river using a conductivity probe.
Photo: Alanna Grant
The team beside a glacial river.
Photo: Alanna Grant

It wasn’t just seals and polar bears that we spotted, but a plethora of other iconic arctic species as well. We saw several arctic foxes, in their brown summer coats, darting about town chasing goslings, as well as many reindeer which seemed mostly untroubled by human presence. Whilst out on the boat we were treated to sightings of guillemots that weave like spitfires, puffins that look as if they’re perpetually struggling to stay airborne, as well as fulmars, kittiwakes, ivory gulls, arctic skuas and many more. But there was one bird in particular that really made the trip memorable; the Arctic Terns… Whilst being lovely birds to look at with their red lipstick and black cap, they are absolutely vicious. They seemed to take a particular disliking to me, and seemed to always go straight for me every time we walked or cycled past them, even if we were in a group. They did, however, provide endless entertainment as we could watch the unsuspecting tourists being attacked from the comfort of the station window, pleased that I wasn’t the target for once.

An arctic fox exploring our sampling site.
Photo: Alanna Grant
A reindeer in the Bayelva catchment.
Photo: Alanna Grant

With the month drawing to a close and the fieldwork component of the trip complete, we bid farewell to Bryan and Kate who made their way back to the UK laden with a large amount of aqueous scientific treasures. All in all we collected over 1500 samples including water, sediment, greenhouse gas, and eDNA samples which will make an impressive dataset. Nathan and I spent the next three days repacking the kit and equipment back onto the pallets and tidying and cleaning the lab spaces. There was a sense of quiet contentment around the station knowing that the job was complete and had gone as well as it could have. But there was also, for me anyway, a sense of sadness at having to leave this vibrant science community and head back to the real world. Being in Ny Ålesund felt very strange at first; remembering to take your shoes off in every building was difficult and getting used to the strangely early meal times even more so (dinner at 16:50?). But by the end of the month the thought of seeing paved roads and driving to Tesco for the weekly food shop felt absolutely foreign. I feel very fortunate that I was able to experience this place and meet so many talented and diverse scientist from across the world. The Polar Regions are experiencing some of the most rapidly changing environmental conditions in the world and the science that is done here is absolutely vital. This campaign wouldn’t have been possible without the dedication of those back in the UK; Amy Pickard, Mike Bowes, Stephen Lofts, Chris Barry, Justyna Olszewska, Rebecca McKenzie and many others. As well as without the crucial support from boat driving, James Bond stunt double and photography extraordinaire, Iain Rudkin. Thank you to all of the visitors that helped with our sampling throughout the month; Jenny Forster Davidson, Simon Armitage, Sue Roberts, and Jane Francis. It was a pleasure to meet you all and share a gin and tonic with you.

When asked by a friend if this trip had scratched my adventure itch, my reply was ‘it’s only made me itchier’. I think I may have just caught the Polar bug…

A scenic boat ride through recently calved ice bergs.
Photo: Alanna Grant
Testing the pH, dissolved oxygen and conductivity of the water as it melts from the glacier in the background.
Photo: Iain Rudkin

The author of the blog – Alanna Grant. Contributors Alex O’Brien and Bryan Spears from the UK Centre for Ecology & Hydrology.

BIOPOLE in the Western Arctic Ocean

Polar oceans export nutrients to the lower latitudes where this export flux can be an important regulator of lower latitude productivity.  In the Arctic Ocean careful analysis of nutrient inputs and outputs suggests that the Arctic is a net exporter of phosphorous and silicate to the North Atlantic but intriguingly not nitrogen with nitrogen inputs to, and outputs from, the Arctic seemingly balanced. The result is a characteristic change to the nitrogen to phosphorous (N:P) ratio found in seawater which gradually increases as ocean waters flow from the Pacific through the Arctic and eventually out into the Atlantic Ocean. Despite considerable uncertainties and limitations of existing datasets nitrogen loss processes occurring in the Western Arctic, particularly within the sediments of the shallow Bering and Chukchi Seas, are known to contribute to the removal of nitrogen and enrichment of phosphorous reported in seawater nutrient measurements. However, the magnitude of this sedimentary nitrogen removal process is insufficient to account for the observed shift in seawater N:P ratios, with several competing explanations presented in the literature as to why this may be. One interesting possibility, and a target of BIOPOLE Work Package 2 (WP2) activities in the western Arctic, is the presence of an additional nitrogen sink operating within the water column.

To address this possibility BIOPOLE WP2 was tasked with measuring bacterial denitrification rates, collecting eDNA/eRNA samples to probe the makeup and function of bacterial communities present in seawater, and to deploy an automated water sampler to collect an annual cycle of seawater nutrient concentrations in water flowing across the remote and seasonally icebound northern Chukchi Shelf. These activities will contribute to wider programme efforts investigating how ecosystem processes can change elemental balances in the northern polar region and to project Milestones i and ii (new observations in polar environments and obtainment of seasonal measurements via autonomous technologies).

Access to the Western Arctic (from the UK at least) is non-trivial but through the supporting efforts of project partners based at the University of Maryland and the University of Alaska, Fairbanks, a single berth was secured on the 2023 autumn Arctic ecosystem survey aboard the R.V. Sikuliaq, an ice-class research vessel operated by the University of Alaska, Fairbanks. Demand for berths was high and the cruise itself was a consortium effort supporting NOAA’s EcoFOCI program (Ecosystems and Fisheries Oceanography) and the NOAA Marine Mammal Lab,  the Distributed Biological Observatory (DBO) programme run from the University of Maryland (project partner), and the Arctic Marine Biodiversity Observation Network (AMBON) and Chukchi Ecosystem Observatory (CEO) projects both run from the University of Alaska Fairbanks (project partner).

The result was an enjoyable cruise with diverse scientific activities ranging from benthic trawls, benthic landers, water sampling, mooring recoveries/deployments, sea-bird and marine mammal observations, and detailed chemical and physical observations across this key Arctic region. Results from BIOPOLE activities will be made available in due course once samples have returned to the UK and have been analysed, but which is expected to be within 6-12 months.

Map of the survey region and sampling locations


Stuart Painter from the National Oceanography Centre 

RRS Sir David Attenborough Sea Trials and Media Trip

In early July the RRS Sir David Attenborough set sail from Edinburgh to the North Sea to conduct sea trials ahead of its maiden science cruise in Nov-Dec: BIOPOLE Southern Ocean Cruise 1 which will be led by Andrew Meijers! Hugh Venables (BAS) is part of the trials team for its duration (until mid-August), providing expertise on the CTDs and autonomous platforms (including gliders). Nadine Johnston (BAS) also joined for the first few days of the trials, taking the opportunity to step through some net deployment logistics (to collect zooplankton), including deployment of the mammoth net (which will be trialed through the ship’s ‘moonpool’).

These few days included the first ever media trip at sea to show journalists the science capability of the ship, to highlight the science it will do this season for BIOPOLE, as well as a trial of a new Hydrotreated Vegetable Oil (HVO). The ships officers and crew (and media) also came along to a presentation on BIOPOLE. Fortuitously, the officers and crew on board, ‘The Giants’ (named after an Antarctic dog sledging team), together with Captain Matthew Neill, will also be supporting our Nov-Dec cruise, so it was a fantastic opportunity to familiarize them with our programme and its goals. If the HVO trials are successful, there is a high possibility that our science cruise will be powered by HVO – but the decision is yet to be made – fingers crossed!

Coverage by the media (including BIOPOLE) include articles in Carbon BriefThe Times and New Scientist (these are both behind a paywall), and  Shipping Technology Magazine. There is also a New Scientist video on You Tube. Many thanks to everyone involved, great to see the BIOPOLE flag flying!

The authors of the blog  – Nadine Johnston, Hugh Venables, Geraint Tarling, and Andrew Meijers from British Antarctic Survey

Team BIOPOLE in the Arctic

Since 1999, the Alfred-Wegener Institute (AWI), has conducted long-term ecological research in the Fram Strait, the passage between East Greenland and Svalbard. In June, Katrin Linse and I joined for this year’s ‘HAUSGARTEN’ expedition on board the research vessel and icebreaker, Polarstern.

This was a fantastic opportunity to collect data with BIOPOLE project partners from AWI (Barbara Niehoff and Sinhué Torres-Valdes) and the Senckenberg Institute (Saskia Brix) which would span the breadth of BIOPOLE’s aims: to understand how nutrients and ecosystems in polar environments influence global primary productivity and carbon cycling from the surface to the seafloor.

With spectacular sea ice and blue skies, the BIOPOLE team worked seamlessly under the midnight sun to sample over 30 stations in just as many days. Katrin and Saskia used an epibenthic sled for the first time in the region to sample the sea-floor animal community; Sinhué and I used an auto-analyser to infer the inorganic and organic nutrient profile of hundreds of water samples; and under the guidance of Barbara, plankton nets were deployed to collect our favourite Arctic zooplankton – copepods. Furthermore, a BIOPOLE-funded Remote Access Sampler (RAS) was deployed as part of a mooring array in the outflowing East Greenland Current, complementing others deployed in the inflowing West Spitsbergen Current.

The data collected will contribute to BIOPOLE work packages 2 and 3. Analysing the nutrient make-up of water flowing out of the Arctic is fundamental to the aims of WP3, and the strategic placement of the HAUSGARTEN stations and RAS will help provide high resolution spatial and temporal coverage within this key Atlantic gateway area. A key aim of WP2 is to refine our understanding of the lipid pump, a process driven primarily by the seasonal vertical migration of polar Calanus copepods. One understudied aspect of this process is the interaction between Calanus and the benthic community. The epi-benthic sled allows for simultaneous sampling of these two communities and subsequent elemental and lipid analysis will offer new insights into bentho-pelagic connections.

Data aside, an important outcome from this expedition was the close interaction and teamwork between BIOPOLE members and partners which is set to continue through future cruises, data sharing and meetings. As an early career researcher, I’m incredibly grateful to the whole BIOPOLE and AWI/Hausgarten team for sharing their knowledge, skills and experience in many ways; from training me in chemical oceanography and mud-sieving, to helping with species identification and general navigation of working at sea. It was an incredibly enriching experience.

The whole BIOPOLE team would like to express our sincere thanks to the Captain Thomas Wunderlich, PSO Thomas Soltwedel, and all scientists and crew for their wonderful support, hospitality and atmosphere on board. For more highlights (including polar bear encounters), read more on the Polarstern blog here.

Copepods were sampled, identified and imaged from the surface to over 5000m deep. Credit: Jen Freer

Copepods were sampled, identified and imaged from the surface to over 5000m deep. Credit: Jen Freer

The author of the blog – Jen Freer (British Antarctic Survey)